
Pid Eins

レナート

ترانیل

Twitter systemd Imprint

Since we �rst proposed systemd for inclusion in the distributions it has

been frequently discussed in many forums, mailing lists and conferences.

In these discussions one can often hear certain myths about systemd,

that are repeated over and over again, but certainly don't gain any truth

by constant repetition. Let's take the time to debunk a few of them:

���

If you build systemd with all con�guration options enabled you will

build 69 individual binaries. These binaries all serve different tasks,

and are neatly separated for a number of reasons. For example, we

designed systemd with security in mind, hence most daemons run at

minimal privileges (using kernel capabilities, for example) and are

responsible for very speci�c tasks only, to minimize their security

surface and impact. Also, systemd parallelizes the boot more than

any prior solution. This parallization happens by running more

https://0pointer.net/blog
https://0pointer.net/blog
https://0pointer.net/blog
https://0pointer.net/blog
https://twitter.com/pid_eins
https://twitter.com/pid_eins
http://www.freedesktop.org/wiki/Software/systemd/
http://www.freedesktop.org/wiki/Software/systemd/
http://0pointer.net/imprint
http://0pointer.net/imprint
https://0pointer.net/blog/projects/the-biggest-myths.html
https://0pointer.net/blog/projects/the-biggest-myths.html
http://www.freedesktop.org/wiki/Software/systemd
http://www.freedesktop.org/wiki/Software/systemd

processes in parallel. Thus it is essential that systemd is nicely split

up into many binaries and thus processes. In fact, many of these

binaries[1] are separated out so nicely, that they are very useful

outside of systemd, too.

A package involving 69 individual binaries can hardly be called

monolithic. What is different from prior solutions however, is that we

ship more components in a single tarball, and maintain them

upstream in a single repository with a uni�ed release cycle.

���

Yes, systemd is fast (A pretty complete userspace boot-up in

~900ms, anyone?), but that's primarily just a side-effect of doing

things right. In fact, we never really sat down and optimized the last

tiny bit of performance out of systemd. Instead, we actually

frequently knowingly picked the slightly slower code paths in order

to keep the code more readable. This doesn't mean being fast was

irrelevant for us, but reducing systemd to its speed is certainly quite

a misconception, since that is certainly not anywhere near the top of

our list of goals.

���

That is just completely not true. Many administrators actually are

keen on reduced downtimes during maintenance windows. In High

Availability setups it's kinda nice if the failed machine comes back up

really fast. In cloud setups with a large number of VMs or containers

the price of slow boots multiplies with the number of instances.

Spending minutes of CPU and IO on really slow boots of hundreds of

VMs or containers reduces your system's density drastically, heck, it

even costs you more energy. Slow boots can be quite �nancially

expensive. Then, fast booting of containers allows you to implement

a logic such as socket activated containers, allowing you to

drastically increase the density of your cloud system.

Of course, in many server setups boot-up is indeed irrelevant, but

systemd is supposed to cover the whole range. And yes, I am aware

that often it is the server �rmware that costs the most time at boot-

up, and the OS anyways fast compared to that, but well, systemd is

still supposed to cover the whole range (see above...), and no, not all

servers have such bad �rmware, and certainly not VMs and

https://plus.google.com/108087225644395745666/posts/LyPQgKdntgA
https://plus.google.com/108087225644395745666/posts/LyPQgKdntgA
https://plus.google.com/108087225644395745666/posts/LyPQgKdntgA
https://plus.google.com/108087225644395745666/posts/LyPQgKdntgA
http://0pointer.de/blog/projects/socket-activated-containers.html
http://0pointer.de/blog/projects/socket-activated-containers.html

containers, which are servers of a kind, too.[2]

���

This is entirely bogus. We just don't use them for the boot process,

because we believe they aren't the best tool for that speci�c

purpose, but that doesn't mean systemd was incompatible with

them. You can easily run shell scripts as systemd services, heck, you

can run scripts written in any language as systemd services, systemd

doesn't care the slightest bit what's inside your executable.

Moreover, we heavily use shell scripts for our own purposes, for

installing, building, testing systemd. And you can stick your scripts in

the early boot process, use them for normal services, you can run

them at latest shutdown, there are practically no limits.

���

This also is entire non-sense. A systemd platform is actually much

simpler than traditional Linuxes because it uni�es system objects

and their dependencies as systemd units. The con�guration �le

language is very simple, and redundant con�guration �les we got rid

of. We provide uniform tools for much of the con�guration of the

system. The system is much less conglomerate than traditional

Linuxes are. We also have pretty comprehensive documentation (all

linked from the homepage) about pretty much every detail of

systemd, and this not only covers admin/user-facing interfaces, but

also developer APIs.

systemd certainly comes with a learning curve. Everything does.

However, we like to believe that it is actually simpler to understand

systemd than a Shell-based boot for most people. Surprised we say

that? Well, as it turns out, Shell is not a pretty language to learn, it's

syntax is arcane and complex. systemd unit �les are substantially

easier to understand, they do not expose a programming language,

but are simple and declarative by nature. That all said, if you are

experienced in shell, then yes, adopting systemd will take a bit of

learning.

To make learning easy we tried hard to provide the maximum

compatibility to previous solutions. But not only that, on many

distributions you'll �nd that some of the traditional tools will now

even tell you -- while executing what you are asking for -- how you

http://www.freedesktop.org/wiki/Software/systemd
http://www.freedesktop.org/wiki/Software/systemd
http://www.freedesktop.org/wiki/Software/systemd
http://www.freedesktop.org/wiki/Software/systemd

could do it with the newer tools instead, in a possibly nicer way.

Anyway, the take-away is probably that systemd is probably as

simple as such a system can be, and that we try hard to make it easy

to learn. But yes, if you know sysvinit then adopting systemd will

require a bit learning, but quite frankly if you mastered sysvinit, then

systemd should be easy for you.

���

Not true at all. At compile time you have a number of configure

switches to select what you want to build, and what not. And we

document how you can select in even more detail what you need,

going beyond our con�gure switches.

This modularity is not totally unlike the one of the Linux kernel,

where you can select many features individually at compile time. If

the kernel is modular enough for you then systemd should be pretty

close, too.

���

That is certainly not true. With systemd we try to cover pretty much

the same range as Linux itself does. While we care for desktop uses,

we also care pretty much the same way for server uses, and

embedded uses as well. You can bet that Red Hat wouldn't make it a

core piece of RHEL7 if it wasn't the best option for managing

services on servers.

People from numerous companies work on systemd. Car

manufactureres build it into cars, Red Hat uses it for a server

operating system, and GNOME uses many of its interfaces for

improving the desktop. You �nd it in toys, in space telescopes, and in

wind turbines.

Most features I most recently worked on are probably relevant

primarily on servers, such as container support, resource

management or the security features. We cover desktop systems

pretty well already, and there are number of companies doing

systemd development for embedded, some even offer consulting

services in it.

���

http://freedesktop.org/wiki/Software/systemd/MinimalBuilds
http://freedesktop.org/wiki/Software/systemd/MinimalBuilds
http://freedesktop.org/wiki/Software/systemd/MinimalBuilds
http://freedesktop.org/wiki/Software/systemd/MinimalBuilds
http://0pointer.de/blog/projects/socket-activated-containers.html
http://0pointer.de/blog/projects/socket-activated-containers.html
http://0pointer.de/blog/projects/resources.html
http://0pointer.de/blog/projects/resources.html
http://0pointer.de/blog/projects/resources.html
http://0pointer.de/blog/projects/resources.html
http://0pointer.de/blog/projects/security.html
http://0pointer.de/blog/projects/security.html

This is not true. Before we began working on systemd we were

pushing for Canonical's Upstart to be widely adopted (and

Fedora/RHEL used it too for a while). However, we eventually came

to the conclusion that its design was inherently �awed at its core (at

least in our eyes: most fundamentally, it leaves dependency

management to the admin/developer, instead of solving this hard

problem in code), and if something's wrong in the core you better

replace it, rather than �x it. This was hardly the only reason though,

other things that came into play, such as the licensing/contribution

agreement mess around it. NIH wasn't one of the reasons,

though...[3]

���

Well, systemd is certainly hosted at fdo, but freedesktop.org is little

else but a repository for code and documentation. Pretty much any

coder can request a repository there and dump his stuff there (as

long as it's somewhat relevant for the infrastructure of free systems).

There's no cabal involved, no "standardization" scheme, no project

vetting, nothing. It's just a nice, free, reliable place to have your

repository. In that regard it's a bit like SourceForge, github,

kernel.org, just not commercial and without over-the-top

requirements, and hence a good place to keep our stuff.

So yes, we host our stuff at fdo, but the implied assumption of this

myth in that there was a group of people who meet and then agree

on how the future free systems look like, is entirely bogus.

����

There's certainly some truth in that. systemd's sources do not

contain a single line of code originating from original UNIX.

However, we derive inspiration from UNIX, and thus there's a ton of

UNIX in systemd. For example, the UNIX idea of "everything is a �le"

�nds re�ection in that in systemd all services are exposed at runtime

in a kernel �le system, the cgroupfs. Then, one of the original

features of UNIX was multi-seat support, based on built-in terminal

support. Text terminals are hardly the state of the art how you

interface with your computer these days however. With systemd we

brought native multi-seat support back, but this time with full

support for today's hardware, covering graphics, mice, audio,

webcams and more, and all that fully automatic, hotplug-capable and

http://0pointer.de/blog/projects/multi-seat.html
http://0pointer.de/blog/projects/multi-seat.html

without con�guration. In fact the design of systemd as a suite of

integrated tools that each have their individual purposes but when

used together are more than just the sum of the parts, that's pretty

much at the core of UNIX philosophy. Then, the way our project is

handled (i.e. maintaining much of the core OS in a single git

repository) is much closer to the BSD model (which is a true UNIX,

unlike Linux) of doing things (where most of the core OS is kept in a

single CVS/SVN repository) than things on Linux ever were.

Ultimately, UNIX is something different for everybody. For us

systemd maintainers it is something we derive inspiration from. For

others it is a religion, and much like the other world religions there

are different readings and understandings of it. Some de�ne UNIX

based on speci�c pieces of code heritage, others see it just as a set of

ideas, others as a set of commands or APIs, and even others as a

de�nition of behaviours. Of course, it is impossible to ever make all

these people happy.

Ultimately the question whether something is UNIX or not matters

very little. Being technically excellent is hardly exclusive to UNIX. For

us, UNIX is a major in�uence (heck, the biggest one), but we also

have other in�uences. Hence in some areas systemd will be very

UNIXy, and in others a little bit less.

����

There's certainly some truth in that. Modern computers are complex

beasts, and the OS running on it will hence have to be complex too.

However, systemd is certainly not more complex than prior

implementations of the same components. Much rather, it's simpler,

and has less redundancy (see above). Moreover, building a simple OS

based on systemd will involve much fewer packages than a

traditional Linux did. Fewer packages makes it easier to build your

system, gets rid of interdependencies and of much of the different

behaviour of every component involved.

����

Well, bloated certainly has many different de�nitions. But in most

de�nitions systemd is probably the opposite of bloat. Since systemd

components share a common code base, they tend to share much

more code for common code paths. Here's an example: in a

traditional Linux setup, sysvinit, start-stop-daemon, inetd, cron,

dbus, all implemented a scheme to execute processes with various

con�guration options in a certain, hopefully clean environment. On

systemd the code paths for all of this, for the con�guration parsing,

as well as the actual execution is shared. This means less code, less

place for mistakes, less memory and cache pressure, and is thus a

very good thing. And as a side-effect you actually get a ton more

functionality for it...

As mentioned above, systemd is also pretty modular. You can choose

at build time which components you need, and which you don't

need. People can hence speci�cally choose the level of "bloat" they

want.

When you build systemd, it only requires three dependencies: glibc,

libcap and dbus. That's it. It can make use of more dependencies, but

these are entirely optional.

So, yeah, whichever way you look at it, it's really not bloated.

����

Completely wrong. The BSD folks are pretty much uninterested in

systemd. If systemd was portable, this would change nothing, they

still wouldn't adopt it. And the same is true for the other Unixes in

the world. Solaris has SMF, BSD has their own "rc" system, and they

always maintained it separately from Linux. The init system is very

close to the core of the entire OS. And these other operating systems

hence de�ne themselves among other things by their core

userspace. The assumption that they'd adopt our core userspace if

we just made it portable, is completely without any foundation.

����

Debian supports non-Linux kernels in their distribution. systemd

won't run on those. Is that a problem though, and should that hinder

them to adopt system as default? Not really. The folks who ported

Debian to these other kernels were willing to invest time in a massive

porting effort, they set up test and build systems, and patched and

built numerous packages for their goal. The maintainance of both a

systemd unit �le and a classic init script for the packaged services is

a negligable amount of work compared to that, especially since those

scripts more often than not exist already.

����

That is simply not true. Porting systemd to other kernel is not

feasible. We just use too many Linux-speci�c interfaces. For a few

one might �nd replacements on other kernels, some features one

might want to turn off, but for most this is nor really possible. Here's

a small, very incomprehensive list: cgroups, fanotify,

umount2(), /proc/self/mountinfo (including noti�cation),

/dev/swaps (same), udev, netlink, the structure of /sys,

/proc/$PID/comm, /proc/$PID/cmdline, /proc/$PID

/loginuid, /proc/$PID/stat, /proc/$PID/session,

/proc/$PID/exe, /proc/$PID/fd, tmpfs, devtmpfs,

capabilities, namespaces of all kinds, various prctl()s, numerous

ioctls, the mount() system call and its semantics, selinux,

audit, inotify, statfs, O_DIRECTORY, O_NOATIME,

/proc/$PID/root, waitid(), SCM_CREDENTIALS,

SCM_RIGHTS, mkostemp(), /dev/input, ...

And no, if you look at this list and pick out the few where you can

think of obvious counterparts on other kernels, then think again, and

look at the others you didn't pick, and the complexity of replacing

them.

����

Non-sense! We use the Linux-speci�c functionality because we need

it to implement what we want. Linux has so many features that

UNIX/POSIX didn't have, and we want to empower the user with

them. These features are incredibly useful, but only if they are

actually exposed in a friendly way to the user, and that's what we do

with systemd.

����

No idea who came up with this crazy myth, but it's absolutely not

true. systemd is con�gured pretty much exclusively via simple text

�les. A few settings you can also alter with the kernel command line

and via environment variables. There's nothing binary in its

con�guration (not even XML). Just plain, simple, easy-to-read text

�les.

����

Well, systemd certainly covers more ground that it used to. It's not

just an init system anymore, but the basic userspace building block

to build an OS from, but we carefully make sure to keep most of the

features optional. You can turn a lot off at compile time, and even

more at runtime. Thus you can choose freely how much feature

creeping you want.

����

systemd is not the ma�a. It's Free Software, you can do with it

whatever you want, and that includes not using it. That's pretty

much the opposite of "forcing".

����

Not true, we carefully made sure when we introduced the journal

that all data is also passed on to any syslog daemon running. In fact,

if something changed, then only that syslog gets more complete data

now than it got before, since we now cover early boot stuff as well as

STDOUT/STDERR of any system service.

����

We try very hard to provide the best possible compatibility with

sysvinit. In fact, the vast majority of init scripts should work just �ne

on systemd, unmodi�ed. However, there actually are indeed a few

incompatibilities, but we try to document these and explain what to

do about them. Ultimately every system that is not actually sysvinit

itself will have a certain amount of incompatibilities with it since it

will not share the exect same code paths.

It is our goal to ensure that differences between the various

distributions are kept at a minimum. That means unit �les usually

work just �ne on a different distribution than you wrote it on, which

is a big improvement over classic init scripts which are very hard to

write in a way that they run on multiple Linux distributions, due to

numerous incompatibilities between them.

����

Not true. Pretty much every single D-Bus interface systemd provides

is also available in a command line tool, for example in systemctl,

loginctl, timedatectl, hostnamectl, localectl and suchlike.

http://0pointer.de/blog/projects/the-journal.html
http://0pointer.de/blog/projects/the-journal.html
http://www.freedesktop.org/wiki/Software/systemd/Incompatibilities
http://www.freedesktop.org/wiki/Software/systemd/Incompatibilities
http://www.freedesktop.org/software/systemd/man/systemctl.html
http://www.freedesktop.org/software/systemd/man/systemctl.html
http://www.freedesktop.org/software/systemd/man/systemctl.html
http://www.freedesktop.org/software/systemd/man/loginctl.html
http://www.freedesktop.org/software/systemd/man/loginctl.html
http://www.freedesktop.org/software/systemd/man/loginctl.html
http://www.freedesktop.org/software/systemd/man/timedatectl.html
http://www.freedesktop.org/software/systemd/man/timedatectl.html
http://www.freedesktop.org/software/systemd/man/timedatectl.html
http://www.freedesktop.org/software/systemd/man/hostnamectl.html
http://www.freedesktop.org/software/systemd/man/hostnamectl.html
http://www.freedesktop.org/software/systemd/man/hostnamectl.html
http://www.freedesktop.org/software/systemd/man/localectl.html
http://www.freedesktop.org/software/systemd/man/localectl.html
http://www.freedesktop.org/software/systemd/man/localectl.html

You can easily call these tools from shell scripts, they open up pretty

much the entire API from the command line with easy-to-use

commands.

That said, D-Bus actually has bindings for almost any scripting

language this world knows. Even from the shell you can invoke

arbitrary D-Bus methods with dbus-send or gdbus. If anything, this

improves scriptability due to the good support of D-Bus in the

various scripting languages.

����

Not true at all. We offer some con�guration tools, and using them

gets you a bit of additional functionality (for example, command line

completion for all settings!), but there's no need at all to use them.

You can always edit the �les in question directly if you wish, and

that's fully supported. Of course sometimes you need to explicitly

reload con�guration of some daemon after editing the con�guration,

but that's pretty much true for most UNIX services.

����

Certainly not according to our data. We have been monitoring the

Fedora bug tracker (and some others) closely for a long long time.

The number of bugs is very low for such a central component of the

OS, especially if you discount the numerous RFE bugs we track for

the project. We are pretty good in keeping systemd out of the list of

blocker bugs of the distribution. We have a relatively fast

development cycle with mostly incremental changes to keep quality

and stability high.

����

False. Some people try to imply that the shell was a good debugger.

Well, it isn't really. In systemd we provide you with actual debugging

features instead. For example: interactive debugging, verbose

tracing, the ability to mask any component during boot, and more.

Also, we provide documentation for it.

It's certainly well debuggable, we needed that for our own

development work, after all. But we'll grant you one thing: it uses

different debugging tools, we believe more appropriate ones for the

http://dbus.freedesktop.org/doc/dbus-send.1.html
http://dbus.freedesktop.org/doc/dbus-send.1.html
http://developer.gnome.org/gio/unstable/gdbus.html
http://developer.gnome.org/gio/unstable/gdbus.html
http://freedesktop.org/wiki/Software/systemd/Debugging
http://freedesktop.org/wiki/Software/systemd/Debugging

purpose, though.

����

Very much untrue. We pretty much exclusively have technical

reasons for the changes we make, and we explain them in the various

pieces of documentation, wiki pages, blog articles, mailing list

announcements. We try hard to avoid making incompatible changes,

and if we do we try to document the why and how in detail. And if

you wonder about something, just ask us!

����

Not true. Currently, there are 16 hackers with commit powers to the

systemd git tree. Of these 16 only six are employed by Red Hat. The

10 others are folks from ArchLinux, from Debian, from Intel, even

from Canonical, Mandriva, Pantheon and a number of community

folks with full commit rights. And they frequently commit big stuff,

major changes. Then, there are 374 individuals with patches in our

tree, and they too came from a number of different companies and

backgrounds, and many of those have way more than one patch in

the tree. The discussions about where we want to take systemd are

done in the open, on our IRC channel (#systemd on freenode, you

are always weclome), on our mailing list, and on public hackfests

(such as our next one in Brno, you are invited). We regularly attend

various conferences, to collect feedback, to explain what we are

doing and why, like few others do. We maintain blogs, engage in

social networks (we actually have some pretty interesting content on

Google+, and our Google+ Community is pretty alive, too.), and try

really hard to explain the why and the how how we do things, and to

listen to feedback and �gure out where the current issues are (for

example, from that feedback we compiled this lists of often heard

myths about systemd...).

What most systemd contributors probably share is a rough idea how

a good OS should look like, and the desire to make it happen.

However, by the very nature of the project being Open Source, and

rooted in the community systemd is just what people want it to be,

and if it's not what they want then they can drive the direction with

patches and code, and if that's not feasible, then there are numerous

http://lists.freedesktop.org/mailman/listinfo/systemd-devel
http://lists.freedesktop.org/mailman/listinfo/systemd-devel
https://plus.google.com/events/cnklef88b85tb6tgf6ue3hn32lg
https://plus.google.com/events/cnklef88b85tb6tgf6ue3hn32lg
http://0pointer.de/blog
http://0pointer.de/blog
https://plus.google.com/104232583922197692623/posts
https://plus.google.com/104232583922197692623/posts
https://plus.google.com/104232583922197692623/posts
https://plus.google.com/104232583922197692623/posts
https://plus.google.com/communities/114587707547576757881
https://plus.google.com/communities/114587707547576757881

other options to use, too, systemd is never exclusive.

One goal of systemd is to unify the dispersed Linux landscape a bit.

We try to get rid of many of the more pointless differences of the

various distributions in various areas of the core OS. As part of that

we sometimes adopt schemes that were previously used by only one

of the distributions and push it to a level where it's the default of

systemd, trying to gently push everybody towards the same set of

basic con�guration. This is never exclusive though, distributions can

continue to deviate from that if they wish, however, if they end-up

using the well-supported default their work becomes much easier

and they might gain a feature or two. Now, as it turns out, more

frequently than not we actually adopted schemes that where

Debianisms, rather than Fedoraisms/Redhatisms as best supported

scheme by systemd. For example, systems running systemd now

generally store their hostname in /etc/hostname, something that

used to be speci�c to Debian and now is used across distributions.

One thing we'll grant you though, we sometimes can be smart-asses.

We try to be prepared whenever we open our mouth, in order to be

able to back-up with facts what we claim. That might make us

appear as smart-asses.

But in general, yes, some of the more in�uental contributors of

systemd work for Red Hat, but they are in the minority, and systemd

is a healthy, open community with different interests, different

backgrounds, just uni�ed by a few rough ideas where the trip should

go, a community where code and its design counts, and certainly not

company af�liation.

���� /usr

Non-sense. Since its beginnings systemd supports the --with-

rootprefix= option to its configure script which allows you to

tell systemd to neatly split up the stuff needed for early boot and the

stuff needed for later on. All this logic is fully present and we keep it

up-to-date right there in systemd's build system.

Of course, we still don't think that actually booting with /usr

unavailable is a good idea, but we support this just �ne in our build

system. This won't �x the inherent problems of the scheme that

you'll encounter all across the board, but you can't blame that on

systemd, because in systemd we support this just �ne.

http://freedesktop.org/wiki/Software/systemd/separate-usr-is-broken
http://freedesktop.org/wiki/Software/systemd/separate-usr-is-broken
http://freedesktop.org/wiki/Software/systemd/separate-usr-is-broken
http://freedesktop.org/wiki/Software/systemd/separate-usr-is-broken
http://freedesktop.org/wiki/Software/systemd/separate-usr-is-broken
http://freedesktop.org/wiki/Software/systemd/separate-usr-is-broken

����

Not true, you can turn off and replace pretty much any part of

systemd, with very few exceptions. And those exceptions (such as

journald) generally allow you to run an alternative side by side to it,

while cooperating nicely with it.

����

This claim is already contradictory in itself: D-Bus uses sockets as

transport, too. Hence whenever D-Bus is used to send something

around, a socket is used for that too. D-Bus is mostly a standardized

serialization of messages to send over these sockets. If anything this

makes it more transparent, since this serialization is well

documented, understood and there are numerous tracing tools and

language bindings for it. This is very much unlike the usual

homegrown protocols the various classic UNIX daemons use to

communicate locally.

Hmm, did I write I just wanted to debunk a "few" myths? Maybe these

were more than just a few... Anyway, I hope I managed to clear up a

couple of misconceptions. Thanks for your time.

[1] For example, systemd-detect-virt, systemd-tmpfiles, systemd-udevd are.

[2] Also, we are trying to do our little part on maybe making this better. By exposing

boot-time performance of the �rmware more prominently in systemd's boot output we

hope to shame the �rmware writers to clean up their stuff.

[3] And anyways, guess which project includes a library "libnih" -- Upstart or systemd?[4]

[4] Hint: it's not systemd!

Category: projects

http://www.freedesktop.org/software/systemd/man/systemd-detect-virt.html
http://www.freedesktop.org/software/systemd/man/systemd-detect-virt.html
http://www.freedesktop.org/software/systemd/man/systemd-detect-virt.html
http://www.freedesktop.org/software/systemd/man/systemd-tmpfiles.html
http://www.freedesktop.org/software/systemd/man/systemd-tmpfiles.html
http://www.freedesktop.org/software/systemd/man/systemd-tmpfiles.html
http://www.freedesktop.org/software/systemd/man/systemd-udevd.service.html
http://www.freedesktop.org/software/systemd/man/systemd-udevd.service.html
http://www.freedesktop.org/software/systemd/man/systemd-udevd.service.html
https://0pointer.net/blog/category/projects.html
https://0pointer.net/blog/category/projects.html

← BACK TO INDEX

© Lennart Poettering. Built using Pelican. Theme by Giulio Fidente on github. .

https://0pointer.net/blog/
https://0pointer.net/blog/
http://getpelican.com/
http://getpelican.com/
https://github.com/giulivo/pelican-svbhack
https://github.com/giulivo/pelican-svbhack

