
blog.farhan.codes
Farhan's Personal and Professional Blog

Home | About | Open Source Contributions | Posts | Categories | Tags

Linux maintains bugs, The real reason ifconfig on Linux
is deprecated

Posted on 2018-06-25 in unix • 919 words • 5 minute read
Tags: freebsd, C

In my third installment of FreeBSD vs Linux, I will discuss underlying reasons for
why Linux moved away from ifconfig(8) to ip(8).

In the past, when people said, “Linux is a kernel, not an operating system”, I knew
that was true but I always thought it was a rather pedantic criticism. Of course no
one runs just the Linux kernel, you run a distribution of Linux. But after reviewing
userland code, I understand the significant drawbacks to developing “just a kernel”
in isolation from the rest of the system.

Lets say a userland program wants to request an object from the kernel. The kernel
structure might be something like this:

struct foo {

size_t size;

char name[20];

int val;

};

On POSIX systems, a typical way to communicate with the kernel is to open a file
descriptor to the appropriate system and send an ioctl(1) with a pointer to where
the kernel should store the responding data. FreeBSD might perform this task as
follows:

struct foo x;

ioctl(fd, CMD_REQUEST_FOO, &x);

Linux should do the same and to be fair it typically does. This manifests as
software source that requires the Linux kernels headers. But because userland tools
are maintained independent of the kernel, and sometimes are even explicitly written

Linux maintains bugs, The real reason ifconfig on Linux is... https://blog.farhan.codes/2018/06/25/linux-maintains-bugs-...

1 of 3 10/30/23, 10:12

https://blog.farhan.codes/
https://blog.farhan.codes/
https://blog.farhan.codes/
https://blog.farhan.codes/
https://blog.farhan.codes/
https://blog.farhan.codes/
https://blog.farhan.codes/
https://blog.farhan.codes/
https://blog.farhan.codes/about/
https://blog.farhan.codes/about/
https://blog.farhan.codes/about/
https://blog.farhan.codes/opensource/
https://blog.farhan.codes/opensource/
https://blog.farhan.codes/opensource/
https://blog.farhan.codes/posts/
https://blog.farhan.codes/posts/
https://blog.farhan.codes/posts/
https://blog.farhan.codes/categories/
https://blog.farhan.codes/categories/
https://blog.farhan.codes/categories/
https://blog.farhan.codes/tags/
https://blog.farhan.codes/tags/
https://blog.farhan.codes/tags/
https://blog.farhan.codes/categories/unix
https://blog.farhan.codes/categories/unix
https://blog.farhan.codes/tags/freebsd
https://blog.farhan.codes/tags/freebsd
https://blog.farhan.codes/tags/c
https://blog.farhan.codes/tags/c

to be cross-platform, they typically maintain their own copy of data structures and
macros independent of the Linux source tree.

So far so good. This might even produce the exact same binary output. But what
happens if the kernel structure or behavior changes? This could be due to a bug fix,
an added feature or an optimization – either way, the structure may change.

On FreeBSD this is not a problem. They update the kernel and userland tools in
tandem. In fact, because both the kernel and userland application are in the same
source tree they can even share the same header files. For 3rd party userland
applications, FreeBSD provides highly stable libraries that do all the kernel-
interactions, such as lib80211(3) – its worth noting that OpenBSD and NetBSD do not
have these libraries because the kernel interface itself is highly stable anyways.
FreeBSD even provides a COMPAT layer in the rare cases that an older binary fails to
run on modern versions of FreeBSD.

Conversely on Linux, because the kernel and the rest of the operating system are not
developed in tandem, this means updating or fixing a kernel struct would almost
guarantee to break a downstream application. The only to prevent this would be to
conduct regular massively coordinated updates to system utilities when the kernel
changes, and properly version applications for specific kernel releases. Quite a
herculean endeavor. This also explains why systemtap, one of Linux’s many answers to
dtrace(1), does not work on Ubuntu.

Also, Linux can never have an equivalent of a lib80211(3) because there is no single
standard library set. Even for the standard C library set, Linux has Glibc, uClibC,
Dietlibc, Bionic and Musl. Rather than guessing the underlying C library
implementation or falling into “dependency hell“, applications default to the most
low-level implementation or their requested functionality. Some tools, such as
ifconfig(8), resort to just reading from the /proc filesystem.

Linux’s solution to this problem was to create a policy of never breaking userland
applications. This means userland interfaces to the Linux kernel never change under
any circumstances, even if they malfunction and have known bugs. That is worth
reiterating. Linux maintains known bugs – and actively refuses to fix them. In fact,
if you attempt to fix them, Linus will curse at you, as manifest by this email.

And this leads back to the topic. Have you ever wondered why nearly every
distribution deprecated ifconfig(8), a standard networking tool dating back to
classic Unix? When Linux first implemented multiple IPv4 addresses on the same
physical interface, it did so by cloning the interface in software and assigning
each clone a unique IPv4 address. For example, eth0 could be cloned with eth0:1,
eth0:2, etc. From a programmatic perspective, eth0 still only had one IPv4 address.
As time passed and developers updated the kernel, it allowed users to assign
multiple IPv4 addresses directly to the same interface�� bypassing the need for
cloning.

But Linux’s API has not changed. It still only returns a single legacy IPv4 address
per interface. An interface could have multiple IPv4 addresses but ifconfig(8) will
still only report a single address. In other words, as it currently stands
ifconfig(8) lies to you. I do not fully understand they did not just update
ifconfig(8) – random IRC rumors say there was a failed attempt due to ifconfig(8)’s

Linux maintains bugs, The real reason ifconfig on Linux is... https://blog.farhan.codes/2018/06/25/linux-maintains-bugs-...

2 of 3 10/30/23, 10:12

http://sourceware.org/systemtap/
http://sourceware.org/systemtap/
https://en.wikipedia.org/wiki/Dependency_hell
https://en.wikipedia.org/wiki/Dependency_hell
https://lkml.org/lkml/2012/12/23/75
https://lkml.org/lkml/2012/12/23/75

convoluted code-base. But for whatever reason, this led to the completely new tool
ip(8).

By contrast, FreeBSD just updates their ifconfig(8) in tandem with any kernel
updates and there were no problems. Simple.

This also explains why Linux has multiple tools for seemingly highly correlated
network tasks. Rather than working together to create a consolidate tool, Linux has
iw(8), iwconfig(8) and brctl(8), etc, whereas FreeBSD just has different drivers for
its ifconfig(8) implementation. For the record, I think ip(8)’s syntax is cleaner
than ifconfig(8)’s syntax, as the latter is a victim of IPv4 legacy syntax. If both
tools worked just fine, it might be worth having ifconfig(8) for legacy scripts
during a transitionary period, but making ip(8) the future. That would be perfectly
fine, but it would be ideal if both tools just worked, rather than needing to
abandon the tool because it is broken.

Written with love a laptop running OpenBSD 6.3.

Find me around the web:
GitHub | GitLab | Fediverse

Copyright © 2023 Farhan Khan. This work is licensed under the CC BY-SA 4.0 license.

Built with Hugo, using the theme smigle, which was influenced by the theme smol.

Linux maintains bugs, The real reason ifconfig on Linux is... https://blog.farhan.codes/2018/06/25/linux-maintains-bugs-...

3 of 3 10/30/23, 10:12

https://github.com/khanzf
https://github.com/khanzf
https://gitlab.com/khanzf
https://gitlab.com/khanzf
https://bsd.network/@farhan
https://bsd.network/@farhan
https://blog.farhan.codes/
https://blog.farhan.codes/
https://blog.farhan.codes/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.gohugo.io/
http://www.gohugo.io/
https://gitlab.com/ian-s-mcb/smigle-hugo-theme
https://gitlab.com/ian-s-mcb/smigle-hugo-theme
https://github.com/sumnerevans/smol
https://github.com/sumnerevans/smol

